- III, pp. 202–203. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1971). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures, Univs. of York (England) and Leuven (Belgium).
- PASTERNAK, R. A. (1956). Acta Cryst. 9, 341-349.
- International Tables for X-ray Crystallography (1962). Vol. PAULING, L. & COREY, R. B. (1953). Proc. Natl. Acad. Sci. US, 39, 253-256.
 - SHEEHAN, J. C. & HESS, G. P. (1955). J. Amer. Chem. Soc. 77, 1067-1068.
 - TAKIGAWA, T., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1966). Bull. Chem. Soc. Japan, 39, 2369–2378.
 - WAKAHARA, A., KIDO, M., FUJIWARA, T. & TOMITA, K. (1973). Bull. Chem. Soc. Japan, 46, 2475-2480.

Acta Cryst. (1977). B33, 247-249

N-Acetyl-L-phenylalanine-N-methylamide

By YOSHINORI HARADA AND YOICHI IITAKA

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 8 July 1976; accepted 10 August 1976)

Abstract. L-APheNMA, $C_{12}H_{16}N_2O_2$, $M_r = 220.2$, cm⁻³. The conformation of the molecule and the $P2_1$, a = 11.695(1), b = 4.966(1), crystal packing closely resemble those of DLmonoclinic, c = 11.531(1) Å, $\beta = 116.6(1)^\circ$, Z = 2, $D_x = 1.215$ g APheNMA. The torsion angles φ_{CN} and ψ_{CC} are

Table 1. Final atomic parameters for N-acetyl-L-phenylalanine-N-methylamide

 $T = \exp[-(\beta_{11}h^2 + \cdots + 2\beta_{23}kl)]$. All quantities are $\times 10^4$

	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	10905 (6)	3097 (0)	1803 (7)	69 (6)	410 (37)	133 (9)	-10 (13)	36 (6)	2 (16)
$\tilde{C}(2)$	9579 (6)	2096 (14)	1371 (6)	98 (7)	309 (29)	84 (7)	22 (13)	34 (6)	2 (15)
$\tilde{C}(\bar{3})$	7304 (6)	3298 (13)	516 (6)	84 (6)	270 (32)	117 (8)	26 (12)	42 (6)	43 (14)
C(4)	6637 (5)	3819 (15)	-936(6)	67 (6)	314 (27)	127 (8)	-10 (14)	42 (6)	8 (15)
C(5)	5749 (7)	1979 (19)	3139 (6)	179 (11)	493 (41)	90 (8)	-10 (19)	53 (8)	-22 (18)
C(6)	6675 (6)	4919 (16)	1201 (6)	89 (7)	443 (36)	119 (9)	28 (15)	37 (6)	60 (16)
C(7)	7251 (6)	4394 (15)	2651 (6)	84 (6)	403 (37)	135 (9)	53 (14)	52 (6)	73 (17)
C(8)	8262 (7)	5906 (17)	3498 (7)	138 (9)	438 (40)	160 (10)	-33 (18)	81 (8)	-8 (20)
C(9)	8792 (7)	5410(17)	4835 (7)	143 (9)	488 (44)	141 (10)	-27 (17)	57 (8)	-3 (18)
C(10)	8321 (7)	3406 (17)	5307 (7)	142 (9)	520 (44)	122 (9)	12 (19)	64 (8)	13 (19)
$\hat{\mathbf{C}}(11)$	7324 (7)	1877 (19)	4469 (7)	155 (10)	556 (44)	147 (10)	-37 (19)	95 (9)	14 (21)
C(12)	6787 (7)	2334 (17)	3131 (7)	106 (8)	521 (43)	139 (9)	-51 (16)	56 (7)	21 (18)
O(1)	9336 (4)	-338 (9)	1318 (5)	108 (5)	261 (21)	170 (6)	28 (10)	37 (5)	3 (11)
O(2)	6452 (4)	6161 (10)	-1347 (4)	148 (6)	232 (20)	124 (6)	1 (11)	25 (5)	50 (11)
N(1)	8649 (4)	3909 (11)	1006 (5)	75 (5)	226 (21)	118 (6)	-3(11)	35 (5)	8 (12)
N(2)	6327 (5)	1732 (12)	-1718 (5)	131 (7)	244 (25)	150 (7)	10 (12)	62 (6)	18 (14)
			$T = \exp[-Bs]$	$\sin^2\theta/\lambda^2$]. Fract	ional coordina	tes are $\times 10^3$.			
	x	у	z	$B(\times 10 \text{ Å}^2)$		x	у	Ζ	<i>B</i> (×10 Å ²
H(Cl)	1106 (7)	515 (19)	171 (7)	117 (24)	H'(C6)	686 (5)	632 (17)	112 (5)	73 (18)
H'(C)	1137(7)	287 (19)	272 (7)	108 (25)	H(C8)	867 (6)	740 (18)	319 (6)	80 (21)
H''(C)	1116(7)	246 (22)	145 (7)	125 (25)	H(C9)	957 (6)	650 (20)	538 (6)	82 (19)
H(C3)	723 (5)	107 (14)	73 (5)	55 (15)	H(C10)	871 (6)	301 (16)	634 (6)	72 (20)
H(C5)	574 (7)	31 (20)	-345 (7)	121 (29)	H(C11)	689 (5)	45 (14)	473 (5)	73 (18)
H'(C5)	481 (7)	264 (19)	-353 (7)	106 (24)	H(C12)	593 (7)	172 (22)	249 (7)	108 (25)
H"(C5)	627 (7)	268 (20)	-337 (7)	115 (25)	H(N1)	882 (5)	517 (13)	105 (5)	53 (15)
H(C6)	575 (4)	452 (12)	76 (4)	41 (13)	H(N2)	644 (5)	3 (13)	-143 (5)	53 (16)

-106.7 and 103.8° respectively, which are very close to those given for the pleated-sheet polypeptide structure.

Introduction. L-APheNMA was synthesized from Lacetylphenylalanine by the activated methyl ester method. Crystals were grown from an aqueous solution and one with approximate dimensions $0.015 \times 0.14 \times 0.5$ mm was mounted on a Philips PW 1100 four-circle diffractometer. The θ -2 θ scanning technique was employed for the data collection with a scan speed of $2\theta = 4^{\circ}$ min⁻¹. The scans were repeated twice when the total counts during a scan were less than 10⁴. The background was measured at each end of the scan for half the total scan time. 661 unique reflexions were measured as above the $2\sigma(I)$ level with graphite-monochromated CuKa radiation for 2θ less than 156°; these correspond to 49% of the theoretically possible number of reflexions in the same angular range.

The structure was solved with MULTAN (Main, Woolfson & Germain, 1971). The least-squares refinement of the structural parameters was carried out with ORFLS (Busing, Martin & Levy, 1962). The following weighting scheme was employed: $\sqrt{w} = 1/\sigma$, where σ is the standard deviation of the structure factor estimated by counting statistics. The final R value was 0.039 for 661 non-zero reflexions.* There was no need to apply absorption or extinction corrections. The atomic parameters are listed in Table 1.

Discussion. The bond lengths and torsion angles are listed in Table 2. The bond lengths and angles are in good agreement with the standard values given for the peptide model (Pauling & Corey, 1953) and also with those found in DL-APheNMA (Harada & Iitaka, 1974). As has been seen in DL-APheNMA, the short C(1)-C(2) distance, 1.488 Å, may be attributed to the librational thermal motions of the terminal C atom. C(1).

The conformations about the C^{α} atom defined by the torsion angles φ_{CN} and ψ_{CC} are -106.7 and 103.8° , which can be compared with -105.5 and 107.9° in DL-APheNMA, -117 and 109° in N-acetyl-DLmethionine-N-methylamide (Harada & Iitaka, 1977a), -118 and 113° in N-acetyl-L-valine-N-methylamide (Harada & Iitaka, 1977b) and -110 and 113° in the parallel-chain pleated-sheet structure model (PCP model; Pauling & Corey, 1953).

Table 3 shows the deviations of atoms from the least-squares plane calculated for each of the three planar groups. The r.m.s. deviations of the atoms are 0.022 Å for peptide group I, 0.019 Å for peptide group II and 0.004 Å for the phenyl group, which can be compared with 0.012, 0.030 and 0.011 Å, respectively, in DL-APheNMA. The dihedral angle between the two peptide groups is 69.9° (69.2° in DL-APheNMA). The χ angles which define the orientation of the side chain with respect to the main chain are

Table 2.	Bond	lengths,	angles	and	torsion	angl	es

C(1) - C(2)	1 · 488 (9) Å	N(1)-C(2)-C(2)	C(1)	117·4 (6)°
C(2) - N(1)	1.311 (8)	C(4)-C(3)-C	C(6)	110.5 (6)
C(2) - O(1)	1.245 (9)	C(4) - C(3) - N	NÌI)	109.2 (5)
C(3) - C(4)	1.521 (9)	C(6) - C(3) - N	N(1)	112.1(6)
C(3) - C(6)	1.530(11)	O(2) - C(4) -		119.8(6)
C(3) = N(1)	1.447 (8)	O(2) - C(4) - N	N(2)	122.3(6)
(4) - 0(2)	1.245 (0)	C(3) - C(4) - N	J(2)	117.8 (6)
C(4) = O(2) C(4) = N(2)	1.310(0)	C(7) - C(6) - C(6)	(2)	113.4 (6)
C(4) = N(2) C(5) = N(2)	1.472(0)	C(8) C(7) = C(0) = C(0)	-(5) 	120.3(7)
C(5) - C(7)	1.472(9) 1.521(10)	C(8) = C(7) = C(7)	(0)	120.3(7) 110.3(7)
C(0) = C(1)	1.321(10) 1.275(0)	C(6) = C(7) = C(7)	(12)	119.3(7)
C(7) = C(0)	1.399 (12)	C(0) = C(1) = C(1) = C(1)	(12)	120.3(7)
C(12) = C(12)	1.300(12) 1.404(11)	C(3) = C(3) = C(3) = C(3)	C(0)	120.0(8)
C(0) = C(9)	1.404(11) 1.267(12)	C(10) - C(9) - C(9)	C(0)	120.3(8)
C(9) = C(10)	1.307(13)	C(11) = C(10)	-C(9)	$119 \cdot 7(6)$
C(10) = C(11)	1.308(10)	C(12) - C(11)	-C(10)	120.0(7)
C(11) - C(12)	1.401 (10)	C(7) - C(12) - C(12)	$-C(\Pi)$	119.8(6)
		C(2) = N(1) = 0	2(3)	125.0(6)
		C(4) - N(2) - 0	$\mathcal{L}(5)$	123.0(6)
			106 7	0
φ	T[C(4) - C(3) - C(3)]	-N(1)-C(2)	-100.7	•
ψ	r[N(2) - C(4) - C(4) - C(4)]	-C(3) - N(1)	103.8	
ω_1	T(C(3) - N(1))	-C(2) - C(1)	176.2	
ω_2	$\tau[C(3) - C(4) - C(4) - C(4)]$	-N(2) - C(3)	-1/0.3	
X -	i(C(i) - C(0) - C(0))	-C(3) - N(1)	-00.9	
χ^{21}	$\tau_{\rm IC}(8) - C(7) - C(7)$	-C(6)-C(3)	89.8	
χ	$\tau_{1}C(12)-C(7)$)		

Table 3. Least-squares planes through planar groups

X, Y and Z are the orthogonal coordinates measured in \dot{A} with $X || a^*, Y || b$ and Z || c.

(1) Peptide group I

C(1)

C(2)

C(3)

0.1001 X - 0.0189 Y	+ 0.9948 Z = -	2.456
-0·025 Å	O(1)	0.008 Å
0.039	N(1)	-0.012

(2) Peptide group II

-0.011

0.8996 X + 0.0288 Y - 0.4358 Z = 8.306						
C(3)	0∙021Å	O(2)	0.002 Å			
C(4)	-0.022	N(2)	-0.021			
C(5)	0.021	. ,				

(3) Benzene ring

-0.6467X + 0.6413Y + 0.4128Z = -3.809

C(6)	0∙001Å	C(10)	0.002 Å
C(7)	0.009	C(11)	0.003
C(8)	-0.005	C(12)	0.009
C(9)	-0.001		

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32033 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table	4.	Comparison	of	х	angles	found	in	the
		derivatives	s of j	phe	nylalani	ne		

Compound	χ¹	χ^{21}	X ²²	Reference
Phenylalanine. HCl	62·1°	83.6°	97·6°∖	(1)
	172.0	83.6	-93 ·1 ∮	(1)
Gly-Phe-Gly	185.3	102.5	-81.5	(2)
L-APheNMA	-60.9	89.6	-88.3	(3)
DL-APheNMA	-57.4	87.4	-93·2	(4)
N-Chloroacetyl-L-Phe-	-175	89	-92	
L-Phe-ethyl ester	-71	96	-92	(5)
N-Bromoacetyl-L-Phe-	-177	97	-89	
L-Phe-ethyl ester	64	92	-90 [/]	

References: (1) Lakshminarayanan, Sasisekharan & Ramachandran (1967). (2) Marsh & Glusker (1961). (3) Present study. (4) Harada & Iitaka (1974). (5) Wei, Doherty & Einstein (1972).

Fig. 1. The projection of the crystal structure along the b axis.

listed in Table 4 for comparison with those reported for various phenylalanine derivatives. All the X angles found in L-APheNMA and DL-APheNMA are very close to each other, reflecting the close similarity in the crystal structures. It may be seen in Table 4 that all the three possible conformations about the $C^a - C^\beta$ bond have been found in the phenylalanine residues.

The projection of the crystal structure along the *b* axis is shown in Fig. 1. As indicated by the similarity in the cell dimensions, b = 4.966 Å (b = 4.98 Å in DL-APheNMA) and a = 11.695 Å (c = 12.29 Å in DL-APheNMA), the arrangement of molecules in (001) is very similar to that in (100) of DL-APheNMA [Fig. 1 can be compared with Fig. 3 in the preceding paper (Harada & Iitaka, 1974)].

Fig. 2. A view of the molecules bound together by hydrogen bonds to form a belt structure.

Table 5. Interatomic distances and angles associated with the hydrogen bonds

Symmetry code: (i) x, 1 + y, z; (ii) x, -1 + y, z.

	N(1) · · · O(1 ⁱ) 2 · 963 (7) Å	$N(2) \cdots O(2^{ii})$ 2.810 (8) Å
$\angle (O=C\cdots N)$	2·7 (3)°	8 4 (3)°
$\angle (C=O\cdots N)$	176·2 (5)	167 9 (5)

The sheet structure, as depicted in Fig. 2 (Fig. 4 in the preceding paper), is also found to extend along the *b* axis. Within the sheet, the molecules are parallel and linked together by hydrogen bonds. The interatomic distances and angles associated with the hydrogen bonds are shown in Table 5. The lengths of the hydrogen bonds, 2.810 and 2.963 Å, are very close to those found in DL-APhe/NMA (2.80 and 2.95 Å).

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- HARADA, Y. & IITAKA, Y. (1974). Acta Cryst. B30, 726-730.
- HARADA, Y. & IITAKA, Y. (1977a). Acta Cryst. To be published
- HARADA, Y. & IITAKA, Y. (1977b). Acta Cryst. To be published.
- LAKSHMINARAYANAN, A. V., SASISEKHARAN, V. & RAMACHANDRAN, G. N. (1967). Conformation of Biopolymers. Edited by G. N. RAMACHANDRAN, Vol. I, pp. 61-82. London: Academic Press.
- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1971). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures, Univs. of York (England) and Leuven (Belgium).
- MARSH, R. E. & GLUSKER, J. P. (1961). Acta Cryst. 14, 1110–1116.
- PAULING, L. & COREY, R. B. (1953). Proc. Natl. Acad. Sci. US, 39, 253–256.
- WEI, C. H., DOHERTY, D. G. & EINSTEIN, J. R. (1972). Acta Cryst. B28, 907–915.